Programs Simple Linear Regression

Program No. 1

Title

Implementation of Simple Linear Regression for CGPA vs Placement Package Prediction

_______________________________________________

Aim

To study and implement Simple Linear Regression using Python to predict a student’s placement package based on CGPA and visualize the dataset using a scatter plot

_______________________________________________

Software / Tools Required

  • Python
  • NumPy
  • Matplotlib
  • Scikit-learn

_______________________________________________

Algorithm

    1. Start the program.
    2. Import the required Python libraries.
    3. Create a dataset consisting of CGPA and corresponding placement packages.
    4. Plot the dataset using a scatter plot to visualize the relationship.
    5. Create a Simple Linear Regression model.
    6. Train the model using the fit() method.
    7. Accept a CGPA value from the user.
    8. Predict the placement package for the given CGPA.
    9. Display the predicted result.
    10. Stop the program.

_______________________________________________

Programs  Link - 

Program 1- Simple Linear Regression -  Simple_Linear_Regression.py

_______________________________________________

Input






CGPA value entered by the user

Example:


_______________________________________________

 

Output

        1.   Plot the dataset (Scatter Plot)

        2.   Predicted placement package in LPA

·       The trained Linear Regression model predicts the placement package for the given CGPA.

            Predicted Package for CGPA 8.2 is: 6.13 LPA

_______________________________________________

 

Result

The Simple Linear Regression model was successfully implemented to predict the placement package based on CGPA, and the relationship between CGPA and package was visualized using a scatter plot.

_______________________________________________

 

Conclusion

Simple Linear Regression effectively predicts placement packages based on CGPA, showing a clear positive linear relationship between academic performance and placement outcome.

_______________________________________________

 ******************** >< ********************

Programs  Link - 

Program 2 - simple_linear_regression_coef_&_intercept

Title

Implementation of Simple Linear Regression for CGPA vs Placement Package Prediction

_______________________________________________

Aim

To study and implement Simple Linear Regression using Python to predict a student’s placement package based on CGPA, visualize the dataset using a scatter plot, and display the regression coefficient and intercept.

_______________________________________________

Software / Tools Required

  • Python
  • NumPy
  • Matplotlib
  • Scikit-learn

_______________________________________________

Algorithm

1)     Start the program.

2)     Import the required Python libraries.

3)     Create a dataset consisting of CGPA and corresponding placement packages.

4)     Plot the dataset using a scatter plot.

5)     Create a Simple Linear Regression model.

6)     Train the model using the fit() method.

7)     Accept CGPA input from the user.

8)     Predict the placement package for the given CGPA.

9)     Display the predicted package.

10) Display the coefficient (slope) and intercept of the regression line.

11) Stop the program.

_______________________________________________

Program 2


_______________________________________________

Input






CGPA value entered by the user

Example:


_______________________________________________

 

Output

        1.   Plot the dataset (Scatter Plot)

        2.   Predicted placement package in LPA

·       The trained Linear Regression model predicts the placement package for the given CGPA.

            Predicted Package for CGPA 8.2 is: 6.13 LPA

        3.      Coefficient and Intercept Output

Coefficient (slope): 1.6049456575929804

Intercept: -7.034131020041879

_______________________________________________

 

Result

The Simple Linear Regression model was successfully implemented to predict the placement package based on CGPA. The relationship between CGPA and package was visualized using a scatter plot, and the regression coefficient and intercept were obtained.

_______________________________________________

 

Conclusion

Simple Linear Regression effectively predicts placement packages based on CGPA and provides insight into the linear relationship through the coefficient and intercept.

_______________________________________________


******************** >< ********************

Program No. 3

Title

Implementation of Simple Linear Regression for CGPA vs Placement Package Prediction

_______________________________________________

Aim

To study and implement Simple Linear Regression using Python to predict a student’s placement package based on CGPA, visualize the dataset using a scatter plot and regression line, and display the regression coefficient and intercept.

_______________________________________________

Software / Tools Required

  • Python
  • NumPy
  • Matplotlib
  • Scikit-learn

_______________________________________________

Algorithm

1)     Start the program.

2)     Import the required Python libraries.

3)     Create a dataset consisting of CGPA and corresponding placement packages.

4)     Plot the dataset using a scatter plot.

5)     Create a Simple Linear Regression model.

6)     Train the model using the fit() method.

7)     Accept CGPA input from the user.

8)     Predict the placement package for the given CGPA.

9)     Display the predicted package.

10) Display the coefficient (slope) and intercept.

11) Predict values for the regression line.

12) Plot the scatter plot along with the regression line.

13) Stop the program.

_______________________________________________

Programs  Link - 

Program 3 - Simple Linear Regression Draw Regression Line.py


_______________________________________________

 

Input


CGPA value entered by the user

nput






CGPA value entered by the user

Example:


_______________________________________________

 

Output

        1.   Plot the dataset (Scatter Plot)

        2.   Predicted placement package in LPA

·       The trained Linear Regression model predicts the placement package for the given CGPA.

            Predicted Package for CGPA 8.2 is: 6.13 LPA

        3.      Coefficient and Intercept Output

Coefficient (slope): 1.6049456575929804

Intercept: -7.034131020041879

        4.      Plot dataset and regression line

_______________________________________________

 

Result and Conclusion

The Simple Linear Regression model was successfully implemented to predict the placement package based on CGPA. The scatter plot displayed the actual data points, and the red regression line represented the best-fit linear relationship between CGPA and package.

The predicted package, along with the regression coefficient and intercept, was obtained correctly for the given input CGPA.

The regression line graph clearly shows a positive linear relationship between CGPA and placement package. As the CGPA increases, the placement package also increases proportionally. Thus, Simple Linear Regression is an effective and reliable method for predicting placement packages based on CGPA.

_______________________________________________

 ******************** >< ********************





Post a Comment

0 Comments